Pandas DataFrame 排除列
Suraj Joshi
2023年1月30日
本教程解释了我们如何从一个 DataFrame 中选择除一列以外的所有列。我们将在本文中使用下面的 DataFrame 示例。
import pandas as pd
stocks_df = pd.DataFrame(
{
"Stock": ["Amazon", "Tesla", "Facebook", "Boeing"],
"Price(in $)": [3180, 835, 267, 209],
"Sector": ["Technology", "Technology", "Technology", "Aircraft"],
}
)
print("Stocks Dataframe:")
print(stocks_df, "\n")
输出:
Stocks Dataframe:
Stock Price(in $) Sector
0 Amazon 3180 Technology
1 Tesla 835 Technology
2 Facebook 267 Technology
3 Boeing 209 Aircraft
Pandas 使用 loc
属性选择除一列以外的所有列
import pandas as pd
stocks_df = pd.DataFrame(
{
"Stock": ["Amazon", "Tesla", "Facebook", "Boeing"],
"Price(in $)": [3180, 835, 267, 209],
"Sector": ["Technology", "Technology", "Technology", "Aircraft"],
}
)
print("Stocks Dataframe:")
print(stocks_df, "\n")
print("Stocks DataFrame excluding Sector Column:")
filtered_df = stocks_df.loc[:, stocks_df.columns != "Sector"]
print(filtered_df, "\n")
输出:
Stocks Dataframe:
Stock Price(in $) Sector
0 Amazon 3180 Technology
1 Tesla 835 Technology
2 Facebook 267 Technology
3 Boeing 209 Aircraft
Stocks DataFrame excluding Sector Column:
Stock Price(in $)
0 Amazon 3180
1 Tesla 835
2 Facebook 267
3 Boeing 209
它从 DataFrame stocks_df
中选择除 Sector
列以外的所有元素,将结果分配给 filtered_df
,然后显示 filetered_df
的内容。
loc
属性根据指定的行和列选择元素。loc
属性中:
符号在 ,
前指定我们需要选择所有的行。对于列,我们指定只选择名称不是 Sector
的列。因此,它将选择除 Sector
列以外的所有列。
Pandas 使用 drop()
方法选择除一列以外的所有列
我们可以使用 drop()
方法,通过在方法中设置 axis=1
,从 DataFrame 中删除指定的列。
import pandas as pd
stocks_df = pd.DataFrame(
{
"Stock": ["Amazon", "Tesla", "Facebook", "Boeing"],
"Price(in $)": [3180, 835, 267, 209],
"Sector": ["Technology", "Technology", "Technology", "Aircraft"],
}
)
print("Stocks Dataframe:")
print(stocks_df, "\n")
print("Stocks DataFrame excluding Sector Column:")
filtered_df = stocks_df.drop("Sector", axis=1)
print(filtered_df, "\n")
输出:
Stocks Dataframe:
Stock Price(in $) Sector
0 Amazon 3180 Technology
1 Tesla 835 Technology
2 Facebook 267 Technology
3 Boeing 209 Aircraft
Stocks DataFrame excluding Sector Column:
Stock Price(in $)
0 Amazon 3180
1 Tesla 835
2 Facebook 267
3 Boeing 209
它从 stocks_df
DataFrame 中删除 Sector
列,并将结果分配给 filtered_df
。
我们也可以通过使用 drop()
方法从 DataFrame 中删除多个列。我们提供一个列名列表作为 drop()
方法的参数。
import pandas as pd
stocks_df = pd.DataFrame(
{
"Stock": ["Amazon", "Tesla", "Facebook", "Boeing"],
"Price(in $)": [3180, 835, 267, 209],
"Sector": ["Technology", "Technology", "Technology", "Aircraft"],
}
)
print("Stocks Dataframe:")
print(stocks_df, "\n")
print("Stocks DataFrame excluding Sector and Price Column:")
filtered_df = stocks_df.drop(["Sector", "Price(in $)"], axis=1)
print(filtered_df, "\n")
输出:
Stocks Dataframe:
Stock Price(in $) Sector
0 Amazon 3180 Technology
1 Tesla 835 Technology
2 Facebook 267 Technology
3 Boeing 209 Aircraft
Stocks DataFrame excluding Sector and Price Column:
Stock
0 Amazon
1 Tesla
2 Facebook
3 Boeing
它从 stocks_df
DataFrame 中排除了 Price(in $)
和 Sector
列。
Pandas 使用 difference()
方法选择除一列外的所有列
import pandas as pd
stocks_df = pd.DataFrame(
{
"Stock": ["Amazon", "Tesla", "Facebook", "Boeing"],
"Price(in $)": [3180, 835, 267, 209],
"Sector": ["Technology", "Technology", "Technology", "Aircraft"],
}
)
print("Stocks Dataframe:")
print(stocks_df, "\n")
print("Stocks DataFrame excluding Sector Column:")
filtered_df = stocks_df[stocks_df.columns.difference(["Sector"])]
print(filtered_df, "\n")
输出:
Stocks Dataframe:
Stock Price(in $) Sector
0 Amazon 3180 Technology
1 Tesla 835 Technology
2 Facebook 267 Technology
3 Boeing 209 Aircraft
Stocks DataFrame excluding Sector Column:
Price(in $) Stock
0 3180 Amazon
1 835 Tesla
2 267 Facebook
3 209 Boeing
它从 stocks_df
DataFrame 中删除 Sector
列,并将结果分配给 filtered_df
。
作者: Suraj Joshi
Suraj Joshi is a backend software engineer at Matrice.ai.
LinkedIn相关文章 - Pandas DataFrame Column
- 如何将 Pandas DataFrame 列标题获取为列表
- 如何删除 Pandas DataFrame 列
- 如何在 Pandas 中将 DataFrame 列转换为日期时间
- 如何获得 Pandas 列中元素总和
- 如何更改 Panas DataFrame 列的顺序
- 如何在 Pandas 中将 DataFrame 列转换为字符串