将 Pandas DataFrame 转换为 JSON
Manav Narula
2023年1月30日
JSON 是 JavaScript Object Notation 的缩写,它是基于 JavaScript 中对象的格式,是一种表示结构化数据的编码技术。它是基于 JavaScript 中对象的格式,是一种表示结构化数据的编码技术。现在它被广泛使用,特别是在服务器和 Web 应用程序之间共享数据。
我们将在本文中介绍如何将 DataFrame 转换为 JSON 字符串。
我们将使用以下 DataFrame。
import pandas as pd
df = pd.DataFrame(
[["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
columns=["Name", "Age", "Course"],
)
print(df)
输出:
Name Age Course
0 Jay 16 BBA
1 Jack 19 BTech
2 Mark 18 BSc
Pandas DataFrame 有一个方法 dataframe.to_json()
,它可以将 DataFrame 转换为 JSON 字符串或存储为外部 JSON 文件。最终的 JSON 格式取决于 orient
参数的值,默认情况下是'columns'
,但也可以指定为'records'
、'index'
、'split'
、'table'
和'values'
。
所有的格式将在下面介绍。
orient = 'columns'
import pandas as pd
df = pd.DataFrame(
[["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
columns=["Name", "Age", "Course"],
)
js = df.to_json(orient="columns")
print(js)
输出:
{"Name":{"0":"Jay","1":"Jack","2":"Mark"},
"Age":{"0":16,"1":19,"2":18},
"Course":{"0":"BBA","1":"BTech","2":"BSc"}}
orient = 'records'
import pandas as pd
df = pd.DataFrame(
[["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
columns=["Name", "Age", "Course"],
)
js = df.to_json(orient="records")
print(js)
输出:
[{"Name":"Jay","Age":16,"Course":"BBA"},{"Name":"Jack","Age":19,"Course":"BTech"},{"Name":"Mark","Age":18,"Course":"BSc"}]
orient = 'index'
import pandas as pd
df = pd.DataFrame(
[["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
columns=["Name", "Age", "Course"],
)
js = df.to_json(orient="index")
print(js)
输出:
{"0":{"Name":"Jay","Age":16,"Course":"BBA"},
"1":{"Name":"Jack","Age":19,"Course":"BTech"},
"2":{"Name":"Mark","Age":18,"Course":"BSc"}}
orient = 'split'
import pandas as pd
df = pd.DataFrame(
[["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
columns=["Name", "Age", "Course"],
)
js = df.to_json(orient="split")
print(js)
输出:
{"columns":["Name","Age","Course"],
"index":[0,1,2],
"data":[["Jay",16,"BBA"],["Jack",19,"BTech"],["Mark",18,"BSc"]]}
orient = 'table'
import pandas as pd
df = pd.DataFrame(
[["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
columns=["Name", "Age", "Course"],
)
js = df.to_json(orient="table")
print(js)
输出:
{"schema": {"fields":[{"name":"index","type":"integer"},{"name":"Name","type":"string"},{"name":"Age","type":"integer"},{"name":"Course","type":"string"}],"primaryKey":["index"],"pandas_version":"0.20.0"}, "data": [{"index":0,"Name":"Jay","Age":16,"Course":"BBA"},{"index":1,"Name":"Jack","Age":19,"Course":"BTech"},{"index":2,"Name":"Mark","Age":18,"Course":"BSc"}]}
如前所述,我们还可以直接将 JSON 输出到外部文件。它可以通过在 dataframe.to_json()
函数中提供文件的路径来实现,如下所示。
import pandas as pd
df = pd.DataFrame(
[["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
columns=["Name", "Age", "Course"],
)
df.to_json("path\example.json", orient="table")
上面的代码将 JSON 文件导出到指定的路径。
作者: Manav Narula
Manav is a IT Professional who has a lot of experience as a core developer in many live projects. He is an avid learner who enjoys learning new things and sharing his findings whenever possible.
LinkedIn相关文章 - Pandas DataFrame
- 如何将 Pandas DataFrame 列标题获取为列表
- 如何删除 Pandas DataFrame 列
- 如何在 Pandas 中将 DataFrame 列转换为日期时间
- 如何在 Pandas DataFrame 中将浮点数转换为整数
- 如何按一列的值对 Pandas DataFrame 进行排序
- 如何用 group-by 和 sum 获得 Pandas 总和