Python Numpy.linalg.inv() - 逆矩陣
Jinku Hu
2023年1月30日
-
numpy.linalg.inv()
語法 -
示例程式碼:
numpy.linalg.inv()
方法 -
示例程式碼:
numpy.linalg.inv()
方法與輸入矩陣 -
示例程式碼:
numpy.square()
與矩陣陣列
Numpy.linalg.inv()
計算給定矩陣的逆矩陣。
numpy.linalg.inv()
語法
numpy.linalg.inverse(arr)
引數
arr |
輸入陣列 |
返回值
返回給定矩陣的逆矩陣。
如果給定的矩陣不是正方形或者求逆矩陣失敗,它會引發錯誤。
示例程式碼:numpy.linalg.inv()
方法
import numpy as np
arr = np.array([[1, 3], [5, 7]])
arr_inv = np.linalg.inv(arr)
print(arr_inv)
輸出:
[[-0.875 0.375]
[ 0.625 -0.125]]
示例程式碼:numpy.linalg.inv()
方法與輸入矩陣
如果給定的輸入是一個 numpy 矩陣,那麼 inv()
也返回一個矩陣。
import numpy as np
arr = np.matrix([[1, 3], [5, 7]])
arr_inv = np.linalg.inv(arr)
print(arr_inv, type(arr_inv))
輸出:
[[-0.875 0.375]
[ 0.625 -0.125]] <class 'numpy.matrix'>
示例程式碼:numpy.square()
與矩陣陣列
import numpy as np
arr = np.array([[[1, 3], [5, 7]], [[2, 5], [4, 6]]])
arr_inv = np.linalg.inv(arr)
print(arr_inv)
輸出:
[[[-0.875 0.375]
[ 0.625 -0.125]]
[[-0.75 0.625]
[ 0.5 -0.25 ]]]
如果輸入陣列由多個矩陣組成,numpy linalg.inv()
方法一次計算它們的逆矩陣。