Pandas는 여러 열에 병합

Suraj Joshi 2023년1월30일
  1. 키 열없이 기본 Pandas DataFrame 병합
  2. on매개 변수의 값을 설정하여 Pandas에서 병합을위한 키 값 지정
  3. left_onright_on을 사용하여 데이터 프레임 병합
Pandas는 여러 열에 병합

이 튜토리얼에서는DataFrame.merge()메서드를 사용하여 Pandas에서 두 개의 DataFrame을 병합하는 방법을 설명합니다.

import pandas as pd

roll_no = [501, 502, 503, 504, 505]

student_df = pd.DataFrame(
    {
        "Roll No": [500, 501, 503, 504, 505, 506],
        "Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
        "Gender": ["Female", "Male", "Male", "Female", "Female", "Male"],
        "Age": [17, 18, 17, 16, 18, 16],
    }
)

grades_df = pd.DataFrame(
    {
        "Roll No": [501, 502, 503, 504, 505, 506],
        "Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
        "Grades": ["A", "B+", "A-", "A", "B", "A+"],
    }
)

print("1st DataFrame:")
print(student_df, "\n")

print("2nd DataFrame:")
print(grades_df, "\n")

print("Merged df:")
print(merged_df)

출력:

1st DataFrame:
   Roll No      Name  Gender  Age
0      500  Jennifer  Female   17
1      501    Travis    Male   18
2      503       Bob    Male   17
3      504      Emma  Female   16
4      505      Luna  Female   18
5      506     Anish    Male   16 

2nd DataFrame:
   Roll No      Name Grades
0      501  Jennifer      A
1      502    Travis     B+
2      503       Bob     A-
3      504      Emma      A
4      505      Luna      B
5      506     Anish     A+ 

DataFrames student_dfgrades_df를 사용하여DataFrame.merge()의 작동을 시연합니다.

키 열없이 기본 Pandas DataFrame 병합

merge()메서드에 병합 할 두 개의 DataFrame 만 사용하는 경우 메서드는 두 DataFrame의 모든 공통 열을 수집하고 두 DataFrame의 각 공통 열을 단일 열로 바꿉니다.

import pandas as pd

roll_no = [501, 502, 503, 504, 505]

student_df = pd.DataFrame(
    {
        "Roll No": [500, 501, 503, 504, 505, 506],
        "Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
        "Gender": ["Female", "Male", "Male", "Female", "Female", "Male"],
        "Age": [17, 18, 17, 16, 18, 16],
    }
)

grades_df = pd.DataFrame(
    {
        "Roll No": [501, 502, 503, 504, 505, 506],
        "Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
        "Grades": ["A", "B+", "A-", "A", "B", "A+"],
    }
)

merged_df = pd.merge(student_df, grades_df)

print("1st DataFrame:")
print(student_df, "\n")

print("2nd DataFrame:")
print(grades_df, "\n")

print("Merged df:")
print(merged_df)

출력:

1st DataFrame:
   Roll No      Name  Gender  Age
0      500  Jennifer  Female   17
1      501    Travis    Male   18
2      503       Bob    Male   17
3      504      Emma  Female   16
4      505      Luna  Female   18
5      506     Anish    Male   16 

2nd DataFrame:
   Roll No      Name Grades
0      501  Jennifer      A
1      502    Travis     B+
2      503       Bob     A-
3      504      Emma      A
4      505      Luna      B
5      506     Anish     A+ 

Merged df:
   Roll No   Name  Gender  Age Grades
0      503    Bob    Male   17     A-
1      504   Emma  Female   16      A
2      505   Luna  Female   18      B
3      506  Anish    Male   16     A+

DataFrames student_dfgrades_df를 병합하고merged_df에 할당합니다. 두 DataFrames에 공통된Roll NoName 열이 있지만merge()함수는 각 공통 열을 단일 열로 병합합니다.

on매개 변수의 값을 설정하여 Pandas에서 병합을위한 키 값 지정

import pandas as pd

roll_no = [501, 502, 503, 504, 505]

student_df = pd.DataFrame(
    {
        "Roll No": [500, 501, 503, 504, 505, 506],
        "Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
        "Gender": ["Female", "Male", "Male", "Female", "Female", "Male"],
        "Age": [17, 18, 17, 16, 18, 16],
    }
)

grades_df = pd.DataFrame(
    {
        "Roll No": [501, 502, 503, 504, 505, 506],
        "Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
        "Grades": ["A", "B+", "A-", "A", "B", "A+"],
    }
)

merged_df = pd.merge(student_df, grades_df, on="Roll No")

print("1st DataFrame:")
print(student_df, "\n")

print("2nd DataFrame:")
print(grades_df, "\n")

print("Merged df:")
print(merged_df)

출력:

1st DataFrame:
   Roll No      Name  Gender  Age
0      500  Jennifer  Female   17
1      501    Travis    Male   18
2      503       Bob    Male   17
3      504      Emma  Female   16
4      505      Luna  Female   18
5      506     Anish    Male   16 

2nd DataFrame:
   Roll No      Name Grades
0      501  Jennifer      A
1      502    Travis     B+
2      503       Bob     A-
3      504      Emma      A
4      505      Luna      B
5      506     Anish     A+ 

Merged df:
   Roll No  Name_x  Gender  Age    Name_y Grades
0      501  Travis    Male   18  Jennifer      A
1      503     Bob    Male   17       Bob     A-
2      504    Emma  Female   16      Emma      A
3      505    Luna  Female   18      Luna      B
4      506   Anish    Male   16     Anish     A+

여기서는on = "Roll No"를 설정하고merge()함수는 두 DataFrames에서 이름이 지정된Roll No 열을 찾고merged_df에 대해 단일Roll No 열만 있습니다. 열Name도 두 DataFrames에 공통이지만Nameon으로 전달되지 않으므로Name_xName_y로 표현되는 왼쪽 및 오른쪽 DataFrame의Name 열에 대해 별도의 열이 있습니다. 매개 변수.

left_onright_on을 사용하여 데이터 프레임 병합

import pandas as pd

roll_no = [501, 502, 503, 504, 505]

student_df = pd.DataFrame(
    {
        "Roll No": [500, 501, 503, 504, 505, 506],
        "Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
        "Gender": ["Female", "Male", "Male", "Female", "Female", "Male"],
        "Age": [17, 18, 17, 16, 18, 16],
    }
)

grades_df = pd.DataFrame(
    {"Id": [501, 502, 503, 504, 505, 506], "Grades": ["A", "B+", "A-", "A", "B", "A+"]}
)

merged_df = pd.merge(student_df, grades_df, left_on="Roll No", right_on="Id")

print("1st DataFrame:")
print(student_df, "\n")

print("2nd DataFrame:")
print(grades_df, "\n")

print("Merged df:")
print(merged_df)

출력:

1st DataFrame:
   Roll No      Name  Gender  Age
0      500  Jennifer  Female   17
1      501    Travis    Male   18
2      503       Bob    Male   17
3      504      Emma  Female   16
4      505      Luna  Female   18
5      506     Anish    Male   16 

2nd DataFrame:
    Id Grades
0  501      A
1  502     B+
2  503     A-
3  504      A
4  505      B
5  506     A+ 

Merged df:
   Roll No    Name  Gender  Age   Id Grades
0      501  Travis    Male   18  501      A
1      503     Bob    Male   17  503     A-
2      504    Emma  Female   16  504      A
3      505    Luna  Female   18  505      B
4      506   Anish    Male   16  506     A+

병합하려는 열에 대해 병합 할 DataFrames에 다른 열 이름이있는 경우left_onright_on 매개 변수를 사용할 수 있습니다. left_on은 왼쪽 DataFrame의 열 이름으로 설정되고 right_on은 오른쪽 DataFrame의 열 이름으로 설정됩니다.

작가: Suraj Joshi
Suraj Joshi avatar Suraj Joshi avatar

Suraj Joshi is a backend software engineer at Matrice.ai.

LinkedIn