Pandas fillna 칼럼
Suraj Joshi
2023년1월30일
이 자습서에서는DataFrame.fillna()
메서드를 사용하여 NaN 값을 지정된 값으로 채우는 방법을 설명합니다.
이 기사에서는 아래 DataFrame을 사용합니다.
import numpy as np
import pandas as pd
roll_no = [501, 502, 503, 504, 505]
student_df = pd.DataFrame(
{
"Roll No": [501, 502, np.nan, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Income(in $)": [200, 400, np.nan, 30, np.nan, np.nan],
"Age": [17, 18, np.nan, 16, 18, np.nan],
}
)
print(student_df)
출력:
Roll No Name Income(in $) Age
0 501.0 Jennifer 200.0 17.0
1 502.0 Travis 400.0 18.0
2 NaN Bob NaN NaN
3 504.0 Emma 30.0 16.0
4 505.0 Luna NaN 18.0
5 506.0 Anish NaN NaN
DataFrame.fillna()
메서드
통사론
DataFrame.fillna(
value=None, method=None, axis=None, inplace=False, limit=None, downcast=None
)
DataFrame.fillna()
메서드를 사용하면DataFrame
의NaN
값을 지정된value
또는method
로 채울 수 있습니다.
DataFrame.fillna()
메서드를 사용하여 지정된 값으로 전체 데이터 프레임 채우기
import numpy as np
import pandas as pd
roll_no = [501, 502, 503, 504, 505]
student_df = pd.DataFrame(
{
"Roll No": [501, 502, np.nan, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Income(in $)": [200, 400, np.nan, 30, np.nan, np.nan],
"Age": [17, 18, np.nan, 16, 18, np.nan],
}
)
filled_df = student_df.fillna(0)
print("DataFrame with NaN values")
print(student_df, "\n")
print("After applying fillna() to the DataFrame:")
print(filled_df, "\n")
출력:
DataFrame with NaN values
Roll No Name Income(in $) Age
0 501.0 Jennifer 200.0 17.0
1 502.0 Travis 400.0 18.0
2 NaN Bob NaN NaN
3 504.0 Emma 30.0 16.0
4 505.0 Luna NaN 18.0
5 506.0 Anish NaN NaN
After applying fillna() to the DataFrame:
Roll No Name Income(in $) Age
0 501.0 Jennifer 200.0 17.0
1 502.0 Travis 400.0 18.0
2 0.0 Bob 0.0 0.0
3 504.0 Emma 30.0 16.0
4 505.0 Luna 0.0 18.0
5 506.0 Anish 0.0 0.0
DataFrame student_df
의 모든NaN
값을DataFrame.fillna()
메서드에 인수로 전달되는0
으로 대체합니다.
import numpy as np
import pandas as pd
roll_no = [501, 502, 503, 504, 505]
student_df = pd.DataFrame(
{
"Roll No": [501, 502, np.nan, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Income(in $)": [200, 400, np.nan, 30, np.nan, np.nan],
"Age": [17, 18, np.nan, 16, 18, np.nan],
}
)
filled_df = student_df.fillna(method="ffill")
print("DataFrame with NaN values")
print(student_df, "\n")
print("After applying fillna() to the DataFrame:")
print(filled_df, "\n")
출력:
DataFrame with NaN values
Roll No Name Income(in $) Age
0 501.0 Jennifer 200.0 17.0
1 502.0 Travis 400.0 18.0
2 NaN Bob NaN NaN
3 504.0 Emma 30.0 16.0
4 505.0 Luna NaN 18.0
5 506.0 Anish NaN NaN
After applying fillna() to the DataFrame:
Roll No Name Income(in $) Age
0 501.0 Jennifer 200.0 17.0
1 502.0 Travis 400.0 18.0
2 502.0 Bob 400.0 18.0
3 504.0 Emma 30.0 16.0
4 505.0 Luna 30.0 18.0
5 506.0 Anish 30.0 18.0
student_df
의 모든NaN
값을NaN
값과 동일한 열의NaN
값 앞에 오는 값으로 채 웁니다.
지정된 열의 NaN
값을 지정된 값으로 채우기
특정 값을 지정된 값으로 채우기 위해 열 이름을 키로 사용하고 해당 열의 NaN
값에 사용할 값을 값으로 사용하여 사전을fillna()
메서드에 전달합니다.
import numpy as np
import pandas as pd
roll_no = [501, 502, 503, 504, 505]
student_df = pd.DataFrame(
{
"Roll No": [501, 502, np.nan, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Income(in $)": [200, 400, np.nan, 300, np.nan, np.nan],
"Age": [17, 18, np.nan, 16, 18, np.nan],
}
)
filled_df = student_df.fillna({"Age": 17, "Income(in $)": 300})
print("DataFrame with NaN values")
print(student_df, "\n")
print("After applying fillna() to the DataFrame:")
print(filled_df, "\n")
출력:
DataFrame with NaN values
Roll No Name Income(in $) Age
0 501.0 Jennifer 200.0 17.0
1 502.0 Travis 400.0 18.0
2 NaN Bob NaN NaN
3 504.0 Emma 300.0 16.0
4 505.0 Luna NaN 18.0
5 506.0 Anish NaN NaN
After applying fillna() to the DataFrame:
Roll No Name Income(in $) Age
0 501.0 Jennifer 200.0 17.0
1 502.0 Travis 400.0 18.0
2 NaN Bob 300.0 17.0
3 504.0 Emma 300.0 16.0
4 505.0 Luna 300.0 18.0
5 506.0 Anish 300.0 17.0
Age
열의 모든 NaN
값을 값 17로 채우고 Income(in $)
열의 모든 NaN
값을 300으로 채 웁니다. Roll No
열의 NaN
값은 다음과 같습니다. 그대로 남아 있습니다.
작가: Suraj Joshi
Suraj Joshi is a backend software engineer at Matrice.ai.
LinkedIn