Pandas는 열 값을 문자열로 변환

Suraj Joshi 2023년1월30일
  1. apply()메서드를 사용하여 DataFrame의 열 값 데이터 유형을 문자열로 변환
  2. applymap()메서드를 사용하여 모든 DataFrame 열의 데이터 유형을string으로 변환
  3. astype()메서드를 사용하여 DataFrame 열 값의 데이터 유형을string으로 변환
Pandas는 열 값을 문자열로 변환

이 자습서에서는 DataFrame의 열 값 데이터 유형을 문자열로 변환하는 방법을 설명합니다.

import pandas as pd

employees_df = pd.DataFrame(
    {
        "Name": ["Ayush", "Bikram", "Ceela", "Kusal", "Shanty"],
        "Score": [31, 38, 33, 39, 35],
        "Age": [33, 34, 38, 45, 37],
    }
)

print(employees_df)

출력:

     Name  Score  Age
0   Ayush     31   33
1  Bikram     38   34
2   Ceela     33   38
3   Kusal     39   45
4  Shanty     35   37

위의 예에 표시된 DataFrame을 사용하여 DataFrame의 열 값 데이터 유형을 문자열로 변환하는 방법을 설명합니다.

apply()메서드를 사용하여 DataFrame의 열 값 데이터 유형을 문자열로 변환

import pandas as pd

employees_df = pd.DataFrame(
    {
        "Name": ["Ayush", "Bikram", "Ceela", "Kusal", "Shanty"],
        "Score": [31, 38, 33, 39, 35],
        "Age": [33, 34, 38, 45, 37],
    }
)
print("DataFrame before Conversion:")
print(employees_df, "\n")
print("Datatype of columns before conversion:")
print(employees_df.dtypes, "\n")

employees_df["Age"] = employees_df["Age"].apply(str)

print("DataFrame after conversion:")
print(employees_df, "\n")
print("Datatype of columns after conversion:")
print(employees_df.dtypes)

출력:

DataFrame before Conversion:
     Name  Score  Age
0   Ayush     31   33
1  Bikram     38   34
2   Ceela     33   38
3   Kusal     39   45
4  Shanty     35   37

Datatype of columns before conversion:
Name     object
Score     int64
Age       int64
dtype: object

DataFrame after conversion:
     Name  Score Age
0   Ayush     31  33
1  Bikram     38  34
2   Ceela     33  38
3   Kusal     39  45
4  Shanty     35  37

Datatype of columns after conversion:
Name     object
Score     int64
Age      object
dtype: object

Age 열의 데이터 유형을int64에서string을 나타내는object 유형으로 변경합니다.

applymap()메서드를 사용하여 모든 DataFrame 열의 데이터 유형을string으로 변환

DataFrame에있는 모든 열 값의 데이터 유형을string 유형으로 변경하려면applymap()메소드를 사용할 수 있습니다.

import pandas as pd

employees_df = pd.DataFrame(
    {
        "Name": ["Ayush", "Bikram", "Ceela", "Kusal", "Shanty"],
        "Score": [31, 38, 33, 39, 35],
        "Age": [33, 34, 38, 45, 37],
    }
)
print("DataFrame before Conversion:")
print(employees_df, "\n")
print("Datatype of columns before conversion:")
print(employees_df.dtypes, "\n")

employees_df = employees_df.applymap(str)

print("DataFrame after conversion:")
print(employees_df, "\n")
print("Datatype of columns after conversion:")
print(employees_df.dtypes)

출력:

DataFrame before Conversion:
     Name  Score  Age
0   Ayush     31   33
1  Bikram     38   34
2   Ceela     33   38
3   Kusal     39   45
4  Shanty     35   37
zeppy@zeppy-G7-7588:~/test/Week-01/taddaa$ python3 1.py
DataFrame before Conversion:
     Name  Score  Age
0   Ayush     31   33
1  Bikram     38   34
2   Ceela     33   38
3   Kusal     39   45
4  Shanty     35   37

Datatype of columns before conversion:
Name     object
Score     int64
Age       int64
dtype: object

DataFrame after conversion:
     Name Score Age
0   Ayush    31  33
1  Bikram    38  34
2   Ceela    33  38
3   Kusal    39  45
4  Shanty    35  37

Datatype of columns after conversion:
Name     object
Score    object
Age      object
dtype: object

모든 DataFrame 열의 데이터 유형을 출력에서 object로 표시된 string유형으로 변환합니다.

astype()메서드를 사용하여 DataFrame 열 값의 데이터 유형을string으로 변환

import pandas as pd

employees_df = pd.DataFrame(
    {
        "Name": ["Ayush", "Bikram", "Ceela", "Kusal", "Shanty"],
        "Score": [31, 38, 33, 39, 35],
        "Age": [33, 34, 38, 45, 37],
    }
)
print("DataFrame before Conversion:")
print(employees_df, "\n")
print("Datatype of columns before conversion:")
print(employees_df.dtypes, "\n")

employees_df["Score"] = employees_df["Score"].astype(str)

print("DataFrame after conversion:")
print(employees_df, "\n")
print("Datatype of columns after conversion:")
print(employees_df.dtypes)

출력:

DataFrame before Conversion:
     Name  Score  Age
0   Ayush     31   33
1  Bikram     38   34
2   Ceela     33   38
3   Kusal     39   45
4  Shanty     35   37

Datatype of columns before conversion:
Name     object
Score     int64
Age       int64
dtype: object

DataFrame after conversion:
     Name Score  Age
0   Ayush    31   33
1  Bikram    38   34
2   Ceela    33   38
3   Kusal    39   45
4  Shanty    35   37

Datatype of columns after conversion:
Name     object
Score    object
Age       int64
dtype: object

’employees_df’Dataframe의 Score열의 데이터 유형을 string유형으로 변환합니다.

작가: Suraj Joshi
Suraj Joshi avatar Suraj Joshi avatar

Suraj Joshi is a backend software engineer at Matrice.ai.

LinkedIn

관련 문장 - Pandas DataFrame Column