Convertir la liste en Pandas DataFrame en Python

Ankur Baral 30 janvier 2023
  1. Convertir la liste en un DataFrame Pandas en Python
  2. Stocker la liste dans une colonne dans Pandas DataFrame en Python
  3. Convertir une liste en un DataFrame avec index en Python
  4. Compressez deux listes dans un seul DataFrame à l’aide de zip() en Python
  5. Convertir une liste multidimensionnelle en un DataFrame Pandas en Python
Convertir la liste en Pandas DataFrame en Python

Cet article présentera des méthodes pour convertir les éléments d’une liste en Pandas DataFrame.

Convertir la liste en un DataFrame Pandas en Python

La DataFrame, en général, est une structure de données étiquetée à deux dimensions. Pandas est un package Python open source très utile pour la science des données.

Ici, nous allons d’abord importer le package pandas. Nous définirons le package pandas comme pd dans ce programme particulier. Ensuite, nous allons créer une liste my_list pour stocker les valeurs de la liste, Tom, Mark et Tony, qui ne sont que des noms aléatoires. Ensuite, nous allons affecter pd.DataFrame(my_list) à une variable df. La méthode DataFrame(my_list) prend les valeurs de my_list et crée un bloc de données avec. Dans la dernière ligne de notre programme, nous avons appelé la DataFrame imprimée que nous avons stockée dans la variable df. Notez que nous aurions également pu simplement écrire df au lieu de print(df) pour voir notre bloc de données.

Exemple de code :

# python 3.x
import pandas as pd

my_list = ["Tom", "Mark", "Tony"]
df = pd.DataFrame(my_list)
print(df)

Production:

    0
0   Tom
1   Mark
2   Tony

Nous pouvons voir que les éléments que nous avons fournis dans la liste sont maintenant dans une colonne dans la sortie ci-dessus.

Stocker la liste dans une colonne dans Pandas DataFrame en Python

Nous pouvons convertir une liste en pandas DataFrame en créant une colonne dans le DataFrame et en stockant les données converties dans la colonne.

Pour convertir une liste en données d’une colonne DataFrame pandas, nous allons créer une liste my_list et donner des noms aléatoires comme valeurs à la liste. Notre objectif est de faire en sorte que les éléments de la liste deviennent les entrées d’une colonne intitulée Names. Pour cela, nous passerons la variable my_list à pd.DataFrame() avec columns = ['Names'] comme ci-dessous. Ensuite, nous imprimons la variable df et exécutons notre code pour voir la sortie.

Exemple de code :

# python 3.x
import pandas as pd

my_list = ["Tom", "Mark", "Tony"]
df = pd.DataFrame(my_list, columns=["Names"])
print(df)

Production:

    Names
0   Tom
1   Mark
2   Tony

Après avoir mis un attribut supplémentaire columns = ['Names'], nous voyons que les noms dans my_list correspondent aux valeurs de la colonne Names dans le DataFrame.

Convertir une liste en un DataFrame avec index en Python

Nous pouvons également indexer les éléments de la liste tout en les convertissant en DataFrame.

Nous allons créer une liste my_list. Notre objectif est de nous assurer que les éléments de la liste deviennent des entrées de colonne intitulées Names avec des index par ligne prédéfinis. Pour cela, nous allons créer une liste index et la remplir avec i, ii et iii. Nous pouvons utiliser la liste comme deuxième paramètre dans pd.DataFrame(). Les premier et troisième paramètres sont my_list et columns =['Names']. Ensuite, nous imprimerons la variable df où est stockée l’expression que nous avons écrite.

Exemple de code :

# python 3.x
import pandas as pd

my_list = [" Tom", "Mark", "Tony"]
df = pd.DataFrame(my_list, index=["i.", "ii.", "iii."], columns=["Names"])
print(df)

Production:

     Names
i.    Tom
ii.   Mark
iii.  Tony

Nous pouvons voir que les valeurs à l’intérieur de la liste index ont remplacé les index pandas par défaut. Nous pouvons mettre n’importe quelle valeur à l’intérieur de l’index et produire des résultats en conséquence.

Compressez deux listes dans un seul DataFrame à l’aide de zip() en Python

La fonction zip() combine les valeurs de deux listes différentes en une seule en regroupant les valeurs des listes avec le même index. Avant de créer un DataFrame, voyons d’abord comment zip() fonctionne.

Exemple de code :

# python 3.x
a = ["1", "2", "3"]
b = ["4", "5", "6"]
c = zip(a, b)
list1 = list(c)
print(list1)

Production:

[('1', '4'), ('2', '5'), ('3', '6')]

On peut voir que la fonction zip() nous a aidé à combiner les listes a et b avec des éléments indexés similaires regroupés. Nous avons stocké le statut zippé des listes a et b sur c, puis créé list1, en y stockant la liste zippée c. Nous allons utiliser le zip() pour créer un DataFrame pandas dans l’exemple suivant.

Nous allons créer deux listes différentes, name_list et height_list, et stocker respectivement des noms et des hauteurs. Ensuite, nous compressons name_list et height_list avec zip(name_list, height_list) pour créer un DataFrame pandas.

Notez que nous pouvons également indexer nos données en mettant simplement un autre attribut index = [ 'index1', 'index2', 'index3' ] où les éléments à l’intérieur de la liste d’index peuvent être n’importe quoi.

Exemple de code :

# python 3.x
import pandas as pd

name_list = ["Tom", "Mark", "Tony"]
height_list = ["150", "151", "152"]
df = pd.DataFrame((zip(name_list, height_list)), columns=["Name", "Height"])
print(df)

Production:

    Name    Height
0   Tom     150
1   Mark    151
2   Tony    152

Nous pouvons voir que le DataFrame formé se compose de valeurs à la fois de name_list et de height_list dans le bon ordre.

Nous pouvons également utiliser cette technique pour compresser plus de deux listes.

Convertir une liste multidimensionnelle en un DataFrame Pandas en Python

Nous pouvons même convertir la liste multidimensionnelle en un DataFrame pandas. Nous pouvons définir les noms de colonne pour les éléments de la liste dans la liste multidimensionnelle. Nous allons démontrer cette méthode avec une liste à deux dimensions.

Pour convertir une liste multidimensionnelle en un DataFrame pandas, nous devons d’abord créer une liste avec plusieurs listes à l’intérieur. Nous allons donc d’abord importer des pandas puis créer une liste info où nous stockerons le nom et l’âge de trois individus différents dans trois listes distinctes. Ensuite, nous appellerons pd.DataFrame() et y traiterons la liste et spécifierons deux titres de colonne, Name et Age pour nos données.

Exemple de code :

# python 3.x
import pandas as pd

info = [["Tom", 18], ["Mark", 25], ["Tony", 68]]
df = pd.DataFrame(info, columns=["Name", "Age"])
print(df)

Production:

    Name    Age
0   Tom     18
1   Mark    25
2   Tony    68

Nous avons deux colonnes en sortie avec les noms et leurs âges dans les ordres respectifs. Nous pouvons ajouter d’autres valeurs aux listes individuelles dans info et leur donner des titres de colonne pour obtenir plus de colonnes dans notre DataFrame.

Article connexe - Python List