Sélectionnez les colonnes de Pandas DataFrame

Suraj Joshi 30 janvier 2023
  1. Sélection des colonnes d’une DataFrame de Pandas en utilisant l’opération d’indexation
  2. Sélectionner les colonnes d’une DataFrame de Pandas en utilisant la méthode DataFrame.drop()
  3. Sélectionner les colonnes d’une DataFrame de Pandas en utilisant la méthode DataFrame.filter()
Sélectionnez les colonnes de Pandas DataFrame

Ce tutoriel explique comment nous pouvons sélectionner des colonnes dans une DataFrame de Pandas en indexant ou en utilisant les méthodes DataFrame.drop() et DataFrame.filter().

Nous utiliserons le DataFrame df comme ci-dessous pour expliquer comment nous pouvons sélectionner des colonnes dans un DataFrame de Pandas.

import pandas as pd

df = pd.DataFrame(
    {
        "A": [302, 504, 708, 103, 343, 565],
        "B": [100, 300, 400, 200, 400, 700],
        "C": [300, 400, 350, 100, 1000, 400],
        "D": [10, 15, 5, 0, 2, 7],
        "E": [4, 5, 6, 7, 8, 9],
    }
)

print(df)

Production :

     A    B     C   D  E
0  302  100   300  10  4
1  504  300   400  15  5
2  708  400   350   5  6
3  103  200   100   0  7
4  343  400  1000   2  8
5  565  700   400   7  9

Sélection des colonnes d’une DataFrame de Pandas en utilisant l’opération d’indexation

import pandas as pd

df = pd.DataFrame(
    {
        "A": [302, 504, 708, 103, 343, 565],
        "B": [100, 300, 400, 200, 400, 700],
        "C": [300, 400, 350, 100, 1000, 400],
        "D": [10, 15, 5, 0, 2, 7],
        "E": [4, 5, 6, 7, 8, 9],
    }
)

derived_df = df[["A", "C", "E"]]

print("The initial DataFrame is:")
print(df, "\n")

print("The DataFrame with A,C and E columns is:")
print(derived_df, "\n")

Production :

The initial DataFrame is:
     A    B     C   D  E
0  302  100   300  10  4
1  504  300   400  15  5
2  708  400   350   5  6
3  103  200   100   0  7
4  343  400  1000   2  8
5  565  700   400   7  9 

The DataFrame with A,C and E columns is:
     A     C  E
0  302   300  4
1  504   400  5
2  708   350  6
3  103   100  7
4  343  1000  8
5  565   400  9 

Il sélectionne les colonnes A, C et E du DataFrame df et assigne ces colonnes à la DataFrame derived_df.

Sélectionner les colonnes d’une DataFrame de Pandas en utilisant la méthode DataFrame.drop()

import pandas as pd

df = pd.DataFrame(
    {
        "A": [302, 504, 708, 103, 343, 565],
        "B": [100, 300, 400, 200, 400, 700],
        "C": [300, 400, 350, 100, 1000, 400],
        "D": [10, 15, 5, 0, 2, 7],
        "E": [4, 5, 6, 7, 8, 9],
    }
)

derived_df = df.drop(["B", "D"], axis=1)

print("The initial DataFrame is:")
print(df, "\n")

print("The DataFrame with A,C and E columns is:")
print(derived_df, "\n")

Production :

The initial DataFrame is:
     A    B     C   D  E
0  302  100   300  10  4
1  504  300   400  15  5
2  708  400   350   5  6
3  103  200   100   0  7
4  343  400  1000   2  8
5  565  700   400   7  9 

The DataFrame with A,C and E columns is:
     A     C  E
0  302   300  4
1  504   400  5
2  708   350  6
3  103   100  7
4  343  1000  8
5  565   400  9 

Il supprime les colonnes B et D du DataFrame df et assigne les colonnes restantes à la derived_df. Alternativement, il sélectionne toutes les colonnes sauf B et D et les assigne à la DataFrame derived_df.

Sélectionner les colonnes d’une DataFrame de Pandas en utilisant la méthode DataFrame.filter()

import pandas as pd

df = pd.DataFrame(
    {
        "A": [302, 504, 708, 103, 343, 565],
        "B": [100, 300, 400, 200, 400, 700],
        "C": [300, 400, 350, 100, 1000, 400],
        "D": [10, 15, 5, 0, 2, 7],
        "E": [4, 5, 6, 7, 8, 9],
    }
)

derived_df = df.filter(["A", "C", "E"])

print("The initial DataFrame is:")
print(df, "\n")

print("The DataFrame with A,C and E columns is:")
print(derived_df, "\n")

Production :

The initial DataFrame is:
     A    B     C   D  E
0  302  100   300  10  4
1  504  300   400  15  5
2  708  400   350   5  6
3  103  200   100   0  7
4  343  400  1000   2  8
5  565  700   400   7  9 

The DataFrame with A,C and E columns is:
     A     C  E
0  302   300  4
1  504   400  5
2  708   350  6
3  103   100  7
4  343  1000  8
5  565   400  9

Il extrait ou filtre les colonnes A, C, et E de la DataFrame df et l’assigne à la DataFrame derived_df.

Auteur: Suraj Joshi
Suraj Joshi avatar Suraj Joshi avatar

Suraj Joshi is a backend software engineer at Matrice.ai.

LinkedIn

Article connexe - Pandas DataFrame Column