Les pandas créent des colonnes en se basant sur d'autres colonnes

Suraj Joshi 30 janvier 2023
  1. Créer de nouvelles colonnes dans le DataFrame de Pandas sur la base des valeurs d’autres colonnes en utilisant l’opération par élément
  2. Créer de nouvelles colonnes dans le DataFrame de Pandas en se basant sur les valeurs des autres colonnes en utilisant la méthode DataFrame.apply()
Les pandas créent des colonnes en se basant sur d'autres colonnes

Ce tutoriel présente la façon dont nous pouvons créer de nouvelles colonnes dans le Pandas DataFrame en fonction des valeurs des autres colonnes du DataFrame en appliquant une fonction à chaque élément d’une colonne ou en utilisant la méthode DataFrame.apply().

import pandas as pd

items_df = pd.DataFrame(
    {
        "Id": [302, 504, 708, 103, 343, 565],
        "Name": ["Watch", "Camera", "Phone", "Shoes", "Laptop", "Bed"],
        "Cost": [300, 400, 350, 100, 1000, 400],
        "Discount(%)": [10, 15, 5, 0, 2, 7],
    }
)

print(items_df)

Production :

    Id    Name  Cost  Discount(%)
0  302   Watch   300           10
1  504  Camera   400           15
2  708   Phone   350            5
3  103   Shoes   100            0
4  343  Laptop  1000            2
5  565     Bed   400            7

Nous utiliserons le DataFrame affiché ci-dessus dans le code pour démontrer comment nous pouvons créer de nouvelles colonnes dans le DataFrame de Pandas basées sur les valeurs d’autres colonnes dans le DataFrame.

Créer de nouvelles colonnes dans le DataFrame de Pandas sur la base des valeurs d’autres colonnes en utilisant l’opération par élément

import pandas as pd

items_df = pd.DataFrame(
    {
        "Id": [302, 504, 708, 103, 343, 565],
        "Name": ["Watch", "Camera", "Phone", "Shoes", "Laptop", "Bed"],
        "Actual Price": [300, 400, 350, 100, 1000, 400],
        "Discount(%)": [10, 15, 5, 0, 2, 7],
    }
)

print("Initial DataFrame:")
print(items_df, "\n")

items_df["Final Price"] = items_df["Actual Price"] - (
    (items_df["Discount(%)"] / 100) * items_df["Actual Price"]
)


print("DataFrame after addition of new column")
print(items_df, "\n")

Production :

Initial DataFrame:
    Id    Name  Actual Price  Discount(%)
0  302   Watch           300           10
1  504  Camera           400           15
2  708   Phone           350            5
3  103   Shoes           100            0
4  343  Laptop          1000            2
5  565     Bed           400            7 

DataFrame after addition of new column
    Id    Name  Actual Price  Discount(%)  Final Price
0  302   Watch           300           10        270.0
1  504  Camera           400           15        340.0
2  708   Phone           350            5        332.5
3  103   Shoes           100            0        100.0
4  343  Laptop          1000            2        980.0
5  565     Bed           400            7        372.0 

Il calcule le prix final de chaque produit en soustrayant la valeur du montant de l’escompte de la colonne Actual Price dans le DataFrame. Ensuite, il attribue la Series des valeurs de prix final à la colonne Final Price du DataFrame items_df.

Créer de nouvelles colonnes dans le DataFrame de Pandas en se basant sur les valeurs des autres colonnes en utilisant la méthode DataFrame.apply()

import pandas as pd

items_df = pd.DataFrame(
    {
        "Id": [302, 504, 708, 103, 343, 565],
        "Name": ["Watch", "Camera", "Phone", "Shoes", "Laptop", "Bed"],
        "Actual_Price": [300, 400, 350, 100, 1000, 400],
        "Discount_Percentage": [10, 15, 5, 0, 2, 7],
    }
)

print("Initial DataFrame:")
print(items_df, "\n")

items_df["Final Price"] = items_df.apply(
    lambda row: row.Actual_Price - ((row.Discount_Percentage / 100) * row.Actual_Price),
    axis=1,
)

print("DataFrame after addition of new column")
print(items_df, "\n")

Production :

Initial DataFrame:
    Id    Name  Actual_Price  Discount_Percentage
0  302   Watch           300                   10
1  504  Camera           400                   15
2  708   Phone           350                    5
3  103   Shoes           100                    0
4  343  Laptop          1000                    2
5  565     Bed           400                    7 

DataFrame after addition of new column
    Id    Name  Actual_Price  Discount_Percentage  Final Price
0  302   Watch           300                   10        270.0
1  504  Camera           400                   15        340.0
2  708   Phone           350                    5        332.5
3  103   Shoes           100                    0        100.0
4  343  Laptop          1000                    2        980.0
5  565     Bed           400                    7        372.0 

Il applique la fonction lambda définie dans la méthode apply() à chaque ligne de la DataFrame items_df et finalement assigne la série de résultats à la colonne Final Price de la DataFrame items_df.

Auteur: Suraj Joshi
Suraj Joshi avatar Suraj Joshi avatar

Suraj Joshi is a backend software engineer at Matrice.ai.

LinkedIn

Article connexe - Pandas DataFrame Column