Pandas fusionan en múltiples columnas
- Combinación de Pandas DataFrame por defecto sin ninguna columna clave
-
Establecer el valor del parámetro
on
para especificar el valor clave para la fusión en Pandas -
Combinar los DataFrames usando
left_on
yright_on
Este tutorial explica cómo podemos fusionar dos DataFrames en Pandas utilizando el método DataFrame.merge()
.
import pandas as pd
roll_no = [501, 502, 503, 504, 505]
student_df = pd.DataFrame(
{
"Roll No": [500, 501, 503, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Gender": ["Female", "Male", "Male", "Female", "Female", "Male"],
"Age": [17, 18, 17, 16, 18, 16],
}
)
grades_df = pd.DataFrame(
{
"Roll No": [501, 502, 503, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Grades": ["A", "B+", "A-", "A", "B", "A+"],
}
)
print("1st DataFrame:")
print(student_df, "\n")
print("2nd DataFrame:")
print(grades_df, "\n")
print("Merged df:")
print(merged_df)
Producción :
1st DataFrame:
Roll No Name Gender Age
0 500 Jennifer Female 17
1 501 Travis Male 18
2 503 Bob Male 17
3 504 Emma Female 16
4 505 Luna Female 18
5 506 Anish Male 16
2nd DataFrame:
Roll No Name Grades
0 501 Jennifer A
1 502 Travis B+
2 503 Bob A-
3 504 Emma A
4 505 Luna B
5 506 Anish A+
Utilizaremos los DataFrames student_df
y grades_df
para demostrar el funcionamiento de DataFrame.merge()
.
Combinación de Pandas DataFrame por defecto sin ninguna columna clave
Si sólo pasamos dos DataFrames a fusionar al método merge()
, el método recogerá todas las columnas comunes en ambos DataFrames y sustituirá cada columna común en ambos DataFrame por una sola.
import pandas as pd
roll_no = [501, 502, 503, 504, 505]
student_df = pd.DataFrame(
{
"Roll No": [500, 501, 503, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Gender": ["Female", "Male", "Male", "Female", "Female", "Male"],
"Age": [17, 18, 17, 16, 18, 16],
}
)
grades_df = pd.DataFrame(
{
"Roll No": [501, 502, 503, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Grades": ["A", "B+", "A-", "A", "B", "A+"],
}
)
merged_df = pd.merge(student_df, grades_df)
print("1st DataFrame:")
print(student_df, "\n")
print("2nd DataFrame:")
print(grades_df, "\n")
print("Merged df:")
print(merged_df)
Resultado:
1st DataFrame:
Roll No Name Gender Age
0 500 Jennifer Female 17
1 501 Travis Male 18
2 503 Bob Male 17
3 504 Emma Female 16
4 505 Luna Female 18
5 506 Anish Male 16
2nd DataFrame:
Roll No Name Grades
0 501 Jennifer A
1 502 Travis B+
2 503 Bob A-
3 504 Emma A
4 505 Luna B
5 506 Anish A+
Merged df:
Roll No Name Gender Age Grades
0 503 Bob Male 17 A-
1 504 Emma Female 16 A
2 505 Luna Female 18 B
3 506 Anish Male 16 A+
Fusiona los DataFrames student_df
y grade_df
y los asigna a merged_df
. Tenemos las columnas Roll No
y Name
comunes a ambos DataFrames pero la función merge()
fusionará cada columna común en una sola columna.
Establecer el valor del parámetro on
para especificar el valor clave para la fusión en Pandas
import pandas as pd
roll_no = [501, 502, 503, 504, 505]
student_df = pd.DataFrame(
{
"Roll No": [500, 501, 503, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Gender": ["Female", "Male", "Male", "Female", "Female", "Male"],
"Age": [17, 18, 17, 16, 18, 16],
}
)
grades_df = pd.DataFrame(
{
"Roll No": [501, 502, 503, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Grades": ["A", "B+", "A-", "A", "B", "A+"],
}
)
merged_df = pd.merge(student_df, grades_df, on="Roll No")
print("1st DataFrame:")
print(student_df, "\n")
print("2nd DataFrame:")
print(grades_df, "\n")
print("Merged df:")
print(merged_df)
Resultado:
1st DataFrame:
Roll No Name Gender Age
0 500 Jennifer Female 17
1 501 Travis Male 18
2 503 Bob Male 17
3 504 Emma Female 16
4 505 Luna Female 18
5 506 Anish Male 16
2nd DataFrame:
Roll No Name Grades
0 501 Jennifer A
1 502 Travis B+
2 503 Bob A-
3 504 Emma A
4 505 Luna B
5 506 Anish A+
Merged df:
Roll No Name_x Gender Age Name_y Grades
0 501 Travis Male 18 Jennifer A
1 503 Bob Male 17 Bob A-
2 504 Emma Female 16 Emma A
3 505 Luna Female 18 Luna B
4 506 Anish Male 16 Anish A+
En este caso, establecemos on="Roll No"
y la función merge()
encontrará la columna con nombre Roll No
en ambos DataFrames y sólo tendremos una única columna Roll No
para el merged_df
. Aunque la columna Name
también es común a ambos DataFrames, tenemos una columna separada para la columna Name
de los DataFrames izquierdo y derecho representada por Name_x
y Name_y
ya que Name
no se pasa como parámetro on
.
Combinar los DataFrames usando left_on
y right_on
import pandas as pd
roll_no = [501, 502, 503, 504, 505]
student_df = pd.DataFrame(
{
"Roll No": [500, 501, 503, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Gender": ["Female", "Male", "Male", "Female", "Female", "Male"],
"Age": [17, 18, 17, 16, 18, 16],
}
)
grades_df = pd.DataFrame(
{"Id": [501, 502, 503, 504, 505, 506], "Grades": ["A", "B+", "A-", "A", "B", "A+"]}
)
merged_df = pd.merge(student_df, grades_df, left_on="Roll No", right_on="Id")
print("1st DataFrame:")
print(student_df, "\n")
print("2nd DataFrame:")
print(grades_df, "\n")
print("Merged df:")
print(merged_df)
Producción :
1st DataFrame:
Roll No Name Gender Age
0 500 Jennifer Female 17
1 501 Travis Male 18
2 503 Bob Male 17
3 504 Emma Female 16
4 505 Luna Female 18
5 506 Anish Male 16
2nd DataFrame:
Id Grades
0 501 A
1 502 B+
2 503 A-
3 504 A
4 505 B
5 506 A+
Merged df:
Roll No Name Gender Age Id Grades
0 501 Travis Male 18 501 A
1 503 Bob Male 17 503 A-
2 504 Emma Female 16 504 A
3 505 Luna Female 18 505 B
4 506 Anish Male 16 506 A+
Si tenemos diferentes nombres de columnas en los DataFrames a fusionar para una columna en la que queremos fusionar, podemos utilizar los parámetros left_on
y right_on
. El parámetro left_on
se ajustará al nombre de la columna en el DataFrame izquierdo y right_on
se ajustará al nombre de la columna en el DataFrame derecho.
Suraj Joshi is a backend software engineer at Matrice.ai.
LinkedIn