Columna Pandas fillna

Suraj Joshi 30 enero 2023
  1. Método DataFrame.fillna()
  2. Rellenar todo el DataFrame con el valor especificado utilizando el método DataFrame.fillna()
  3. Rellenar los valores NaN de la columna especificada con un valor especificado
Columna Pandas fillna

Este tutorial explica cómo podemos rellenar valores NaN con valores especificados utilizando el método DataFrame.fillna().

En este artículo utilizaremos el siguiente DataFrame.

import numpy as np
import pandas as pd

roll_no = [501, 502, 503, 504, 505]

student_df = pd.DataFrame(
    {
        "Roll No": [501, 502, np.nan, 504, 505, 506],
        "Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
        "Income(in $)": [200, 400, np.nan, 30, np.nan, np.nan],
        "Age": [17, 18, np.nan, 16, 18, np.nan],
    }
)

print(student_df)

Producción :

   Roll No      Name  Income(in $)   Age
0    501.0  Jennifer         200.0  17.0
1    502.0    Travis         400.0  18.0
2      NaN       Bob           NaN   NaN
3    504.0      Emma          30.0  16.0
4    505.0      Luna           NaN  18.0
5    506.0     Anish           NaN   NaN

Método DataFrame.fillna()

Sintaxis

DataFrame.fillna(
    value=None, method=None, axis=None, inplace=False, limit=None, downcast=None
)

El método DataFrame.fillna() nos permite rellenar los valores NaN del DataFrame con el valor o method especificado.

Rellenar todo el DataFrame con el valor especificado utilizando el método DataFrame.fillna()

import numpy as np
import pandas as pd

roll_no = [501, 502, 503, 504, 505]

student_df = pd.DataFrame(
    {
        "Roll No": [501, 502, np.nan, 504, 505, 506],
        "Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
        "Income(in $)": [200, 400, np.nan, 30, np.nan, np.nan],
        "Age": [17, 18, np.nan, 16, 18, np.nan],
    }
)
filled_df = student_df.fillna(0)

print("DataFrame with NaN values")
print(student_df, "\n")

print("After applying fillna() to the DataFrame:")
print(filled_df, "\n")

Producción :

DataFrame with NaN values
   Roll No      Name  Income(in $)   Age
0    501.0  Jennifer         200.0  17.0
1    502.0    Travis         400.0  18.0
2      NaN       Bob           NaN   NaN
3    504.0      Emma          30.0  16.0
4    505.0      Luna           NaN  18.0
5    506.0     Anish           NaN   NaN 

After applying fillna() to the DataFrame:
   Roll No      Name  Income(in $)   Age
0    501.0  Jennifer         200.0  17.0
1    502.0    Travis         400.0  18.0
2      0.0       Bob           0.0   0.0
3    504.0      Emma          30.0  16.0
4    505.0      Luna           0.0  18.0
5    506.0     Anish           0.0   0.0 

Reemplaza todos los valores NaN del DataFrame student_df por 0 que se pasa como argumento al método DataFrame.fillna().

import numpy as np
import pandas as pd

roll_no = [501, 502, 503, 504, 505]

student_df = pd.DataFrame(
    {
        "Roll No": [501, 502, np.nan, 504, 505, 506],
        "Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
        "Income(in $)": [200, 400, np.nan, 30, np.nan, np.nan],
        "Age": [17, 18, np.nan, 16, 18, np.nan],
    }
)
filled_df = student_df.fillna(method="ffill")

print("DataFrame with NaN values")
print(student_df, "\n")

print("After applying fillna() to the DataFrame:")
print(filled_df, "\n")

Resultado:

DataFrame with NaN values
   Roll No      Name  Income(in $)   Age
0    501.0  Jennifer         200.0  17.0
1    502.0    Travis         400.0  18.0
2      NaN       Bob           NaN   NaN
3    504.0      Emma          30.0  16.0
4    505.0      Luna           NaN  18.0
5    506.0     Anish           NaN   NaN 

After applying fillna() to the DataFrame:
   Roll No      Name  Income(in $)   Age
0    501.0  Jennifer         200.0  17.0
1    502.0    Travis         400.0  18.0
2    502.0       Bob         400.0  18.0
3    504.0      Emma          30.0  16.0
4    505.0      Luna          30.0  18.0
5    506.0     Anish          30.0  18.0 

Rellena todos los valores NaN en el student_df por el valor que precede al valor NaN en la misma columna que de valor NaN.

Rellenar los valores NaN de la columna especificada con un valor especificado

Para rellenar los valores particulares con los valores especificados, pasamos un diccionario al método fillna() con el nombre de la columna como clave y el valor a utilizar para los valores NaN de esa columna como valor.

import numpy as np
import pandas as pd

roll_no = [501, 502, 503, 504, 505]

student_df = pd.DataFrame(
    {
        "Roll No": [501, 502, np.nan, 504, 505, 506],
        "Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
        "Income(in $)": [200, 400, np.nan, 300, np.nan, np.nan],
        "Age": [17, 18, np.nan, 16, 18, np.nan],
    }
)
filled_df = student_df.fillna({"Age": 17, "Income(in $)": 300})

print("DataFrame with NaN values")
print(student_df, "\n")

print("After applying fillna() to the DataFrame:")
print(filled_df, "\n")

Producción :

DataFrame with NaN values
   Roll No      Name  Income(in $)   Age
0    501.0  Jennifer         200.0  17.0
1    502.0    Travis         400.0  18.0
2      NaN       Bob           NaN   NaN
3    504.0      Emma         300.0  16.0
4    505.0      Luna           NaN  18.0
5    506.0     Anish           NaN   NaN 

After applying fillna() to the DataFrame:
   Roll No      Name  Income(in $)   Age
0    501.0  Jennifer         200.0  17.0
1    502.0    Travis         400.0  18.0
2      NaN       Bob         300.0  17.0
3    504.0      Emma         300.0  16.0
4    505.0      Luna         300.0  18.0
5    506.0     Anish         300.0  17.0 

Rellena todos los valores NaN de la columna Age con el valor 17 y todos los valores NaN de la columna Income(in $) con 300. Los valores NaN de la columna Roll No se dejan como están.

Suraj Joshi avatar Suraj Joshi avatar

Suraj Joshi is a backend software engineer at Matrice.ai.

LinkedIn

Artículo relacionado - Pandas NaN