Columna Pandas fillna
-
Método
DataFrame.fillna()
-
Rellenar todo el DataFrame con el valor especificado utilizando el método
DataFrame.fillna()
-
Rellenar los valores
NaN
de la columna especificada con un valor especificado
Este tutorial explica cómo podemos rellenar valores NaN con valores especificados utilizando el método DataFrame.fillna()
.
En este artículo utilizaremos el siguiente DataFrame.
import numpy as np
import pandas as pd
roll_no = [501, 502, 503, 504, 505]
student_df = pd.DataFrame(
{
"Roll No": [501, 502, np.nan, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Income(in $)": [200, 400, np.nan, 30, np.nan, np.nan],
"Age": [17, 18, np.nan, 16, 18, np.nan],
}
)
print(student_df)
Producción :
Roll No Name Income(in $) Age
0 501.0 Jennifer 200.0 17.0
1 502.0 Travis 400.0 18.0
2 NaN Bob NaN NaN
3 504.0 Emma 30.0 16.0
4 505.0 Luna NaN 18.0
5 506.0 Anish NaN NaN
Método DataFrame.fillna()
Sintaxis
DataFrame.fillna(
value=None, method=None, axis=None, inplace=False, limit=None, downcast=None
)
El método DataFrame.fillna()
nos permite rellenar los valores NaN
del DataFrame
con el valor
o method
especificado.
Rellenar todo el DataFrame con el valor especificado utilizando el método DataFrame.fillna()
import numpy as np
import pandas as pd
roll_no = [501, 502, 503, 504, 505]
student_df = pd.DataFrame(
{
"Roll No": [501, 502, np.nan, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Income(in $)": [200, 400, np.nan, 30, np.nan, np.nan],
"Age": [17, 18, np.nan, 16, 18, np.nan],
}
)
filled_df = student_df.fillna(0)
print("DataFrame with NaN values")
print(student_df, "\n")
print("After applying fillna() to the DataFrame:")
print(filled_df, "\n")
Producción :
DataFrame with NaN values
Roll No Name Income(in $) Age
0 501.0 Jennifer 200.0 17.0
1 502.0 Travis 400.0 18.0
2 NaN Bob NaN NaN
3 504.0 Emma 30.0 16.0
4 505.0 Luna NaN 18.0
5 506.0 Anish NaN NaN
After applying fillna() to the DataFrame:
Roll No Name Income(in $) Age
0 501.0 Jennifer 200.0 17.0
1 502.0 Travis 400.0 18.0
2 0.0 Bob 0.0 0.0
3 504.0 Emma 30.0 16.0
4 505.0 Luna 0.0 18.0
5 506.0 Anish 0.0 0.0
Reemplaza todos los valores NaN
del DataFrame student_df
por 0
que se pasa como argumento al método DataFrame.fillna()
.
import numpy as np
import pandas as pd
roll_no = [501, 502, 503, 504, 505]
student_df = pd.DataFrame(
{
"Roll No": [501, 502, np.nan, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Income(in $)": [200, 400, np.nan, 30, np.nan, np.nan],
"Age": [17, 18, np.nan, 16, 18, np.nan],
}
)
filled_df = student_df.fillna(method="ffill")
print("DataFrame with NaN values")
print(student_df, "\n")
print("After applying fillna() to the DataFrame:")
print(filled_df, "\n")
Resultado:
DataFrame with NaN values
Roll No Name Income(in $) Age
0 501.0 Jennifer 200.0 17.0
1 502.0 Travis 400.0 18.0
2 NaN Bob NaN NaN
3 504.0 Emma 30.0 16.0
4 505.0 Luna NaN 18.0
5 506.0 Anish NaN NaN
After applying fillna() to the DataFrame:
Roll No Name Income(in $) Age
0 501.0 Jennifer 200.0 17.0
1 502.0 Travis 400.0 18.0
2 502.0 Bob 400.0 18.0
3 504.0 Emma 30.0 16.0
4 505.0 Luna 30.0 18.0
5 506.0 Anish 30.0 18.0
Rellena todos los valores NaN
en el student_df
por el valor que precede al valor NaN
en la misma columna que de valor NaN
.
Rellenar los valores NaN
de la columna especificada con un valor especificado
Para rellenar los valores particulares con los valores especificados, pasamos un diccionario al método fillna()
con el nombre de la columna como clave y el valor a utilizar para los valores NaN
de esa columna como valor.
import numpy as np
import pandas as pd
roll_no = [501, 502, 503, 504, 505]
student_df = pd.DataFrame(
{
"Roll No": [501, 502, np.nan, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Income(in $)": [200, 400, np.nan, 300, np.nan, np.nan],
"Age": [17, 18, np.nan, 16, 18, np.nan],
}
)
filled_df = student_df.fillna({"Age": 17, "Income(in $)": 300})
print("DataFrame with NaN values")
print(student_df, "\n")
print("After applying fillna() to the DataFrame:")
print(filled_df, "\n")
Producción :
DataFrame with NaN values
Roll No Name Income(in $) Age
0 501.0 Jennifer 200.0 17.0
1 502.0 Travis 400.0 18.0
2 NaN Bob NaN NaN
3 504.0 Emma 300.0 16.0
4 505.0 Luna NaN 18.0
5 506.0 Anish NaN NaN
After applying fillna() to the DataFrame:
Roll No Name Income(in $) Age
0 501.0 Jennifer 200.0 17.0
1 502.0 Travis 400.0 18.0
2 NaN Bob 300.0 17.0
3 504.0 Emma 300.0 16.0
4 505.0 Luna 300.0 18.0
5 506.0 Anish 300.0 17.0
Rellena todos los valores NaN
de la columna Age
con el valor 17 y todos los valores NaN
de la columna Income(in $)
con 300. Los valores NaN
de la columna Roll No
se dejan como están.
Suraj Joshi is a backend software engineer at Matrice.ai.
LinkedIn