Pandas Crear Columna Basada en Otras Columnas
- Crear nuevas columnas en Pandas DataFrame basándose en los valores de otras columnas utilizando la operación Element-Wise
-
Crear nuevas columnas en el DataFrame de Pandas basándose en los valores de otras columnas utilizando el método
DataFrame.apply()
Este tutorial introducirá cómo podemos crear nuevas columnas en Pandas DataFrame basadas en los valores de otras columnas en el DataFrame aplicando una función a cada elemento de una columna o utilizando el método DataFrame.apply()
.
import pandas as pd
items_df = pd.DataFrame(
{
"Id": [302, 504, 708, 103, 343, 565],
"Name": ["Watch", "Camera", "Phone", "Shoes", "Laptop", "Bed"],
"Cost": [300, 400, 350, 100, 1000, 400],
"Discount(%)": [10, 15, 5, 0, 2, 7],
}
)
print(items_df)
Producción :
Id Name Cost Discount(%)
0 302 Watch 300 10
1 504 Camera 400 15
2 708 Phone 350 5
3 103 Shoes 100 0
4 343 Laptop 1000 2
5 565 Bed 400 7
Utilizaremos el DataFrame mostrado arriba en el fragmento de código para demostrar cómo podemos crear nuevas columnas en Pandas DataFrame basándonos en los valores de otras columnas del DataFrame.
Crear nuevas columnas en Pandas DataFrame basándose en los valores de otras columnas utilizando la operación Element-Wise
import pandas as pd
items_df = pd.DataFrame(
{
"Id": [302, 504, 708, 103, 343, 565],
"Name": ["Watch", "Camera", "Phone", "Shoes", "Laptop", "Bed"],
"Actual Price": [300, 400, 350, 100, 1000, 400],
"Discount(%)": [10, 15, 5, 0, 2, 7],
}
)
print("Initial DataFrame:")
print(items_df, "\n")
items_df["Final Price"] = items_df["Actual Price"] - (
(items_df["Discount(%)"] / 100) * items_df["Actual Price"]
)
print("DataFrame after addition of new column")
print(items_df, "\n")
Producción :
Initial DataFrame:
Id Name Actual Price Discount(%)
0 302 Watch 300 10
1 504 Camera 400 15
2 708 Phone 350 5
3 103 Shoes 100 0
4 343 Laptop 1000 2
5 565 Bed 400 7
DataFrame after addition of new column
Id Name Actual Price Discount(%) Final Price
0 302 Watch 300 10 270.0
1 504 Camera 400 15 340.0
2 708 Phone 350 5 332.5
3 103 Shoes 100 0 100.0
4 343 Laptop 1000 2 980.0
5 565 Bed 400 7 372.0
Calcula el precio final de cada producto restando el valor del importe del descuento de la columna Actual Price
del DataFrame. Luego asigna la Series
de los valores del precio final a la columna Final Price
del DataFrame items_df
.
Crear nuevas columnas en el DataFrame de Pandas basándose en los valores de otras columnas utilizando el método DataFrame.apply()
import pandas as pd
items_df = pd.DataFrame(
{
"Id": [302, 504, 708, 103, 343, 565],
"Name": ["Watch", "Camera", "Phone", "Shoes", "Laptop", "Bed"],
"Actual_Price": [300, 400, 350, 100, 1000, 400],
"Discount_Percentage": [10, 15, 5, 0, 2, 7],
}
)
print("Initial DataFrame:")
print(items_df, "\n")
items_df["Final Price"] = items_df.apply(
lambda row: row.Actual_Price - ((row.Discount_Percentage / 100) * row.Actual_Price),
axis=1,
)
print("DataFrame after addition of new column")
print(items_df, "\n")
Resultado:
Initial DataFrame:
Id Name Actual_Price Discount_Percentage
0 302 Watch 300 10
1 504 Camera 400 15
2 708 Phone 350 5
3 103 Shoes 100 0
4 343 Laptop 1000 2
5 565 Bed 400 7
DataFrame after addition of new column
Id Name Actual_Price Discount_Percentage Final Price
0 302 Watch 300 10 270.0
1 504 Camera 400 15 340.0
2 708 Phone 350 5 332.5
3 103 Shoes 100 0 100.0
4 343 Laptop 1000 2 980.0
5 565 Bed 400 7 372.0
Aplica la función lambda definida en el método apply()
a cada fila del DataFrame items_df
y finalmente asigna la serie de resultados a la columna Final Price
del DataFrame items_df
.
Suraj Joshi is a backend software engineer at Matrice.ai.
LinkedInArtículo relacionado - Pandas DataFrame Column
- Cómo obtener las cabeceras de columna de Pandas DataFrame como una lista
- Cómo borrar la columna de Pandas DataFrame
- Cómo convertir la columna del DataFrame a Datetime en Pandas
- Cómo obtener la suma de la columna de Pandas
- Cómo cambiar el orden de las columnas Pandas DataFrame
- Cómo convertir la columna del DataFrame en cadena en los pandas