Convertir valores de columna de Pandas a cadena
-
Convertir el tipo de datos de los valores de las columnas de un DataFrame a una cadena utilizando el método
apply()
-
Convertir el tipo de datos de todas las columnas del DataFrame a
string
utilizando el métodoapplymap()
-
Convertir el tipo de datos de los valores de las columnas de un DataFrame a
string
utilizando el métodoastype()
Este tutorial explica cómo podemos convertir el tipo de datos de los valores de columna de un DataFrame a la cadena.
import pandas as pd
employees_df = pd.DataFrame(
{
"Name": ["Ayush", "Bikram", "Ceela", "Kusal", "Shanty"],
"Score": [31, 38, 33, 39, 35],
"Age": [33, 34, 38, 45, 37],
}
)
print(employees_df)
Resultado:
Name Score Age
0 Ayush 31 33
1 Bikram 38 34
2 Ceela 33 38
3 Kusal 39 45
4 Shanty 35 37
Utilizaremos el DataFrame mostrado en el ejemplo anterior para explicar cómo podemos convertir el tipo de datos de los valores de columna de un DataFrame a la cadena.
Convertir el tipo de datos de los valores de las columnas de un DataFrame a una cadena utilizando el método apply()
import pandas as pd
employees_df = pd.DataFrame(
{
"Name": ["Ayush", "Bikram", "Ceela", "Kusal", "Shanty"],
"Score": [31, 38, 33, 39, 35],
"Age": [33, 34, 38, 45, 37],
}
)
print("DataFrame before Conversion:")
print(employees_df, "\n")
print("Datatype of columns before conversion:")
print(employees_df.dtypes, "\n")
employees_df["Age"] = employees_df["Age"].apply(str)
print("DataFrame after conversion:")
print(employees_df, "\n")
print("Datatype of columns after conversion:")
print(employees_df.dtypes)
Resultado:
DataFrame before Conversion:
Name Score Age
0 Ayush 31 33
1 Bikram 38 34
2 Ceela 33 38
3 Kusal 39 45
4 Shanty 35 37
Datatype of columns before conversion:
Name object
Score int64
Age int64
dtype: object
DataFrame after conversion:
Name Score Age
0 Ayush 31 33
1 Bikram 38 34
2 Ceela 33 38
3 Kusal 39 45
4 Shanty 35 37
Datatype of columns after conversion:
Name object
Score int64
Age object
dtype: object
Cambia el tipo de datos de la columna Age
de int64
a tipo object
que representa la cadena
.
Convertir el tipo de datos de todas las columnas del DataFrame a string
utilizando el método applymap()
Si queremos cambiar el tipo de datos de todas las columnas del DataFrame al tipo string
, podemos utilizar el método applymap()
.
import pandas as pd
employees_df = pd.DataFrame(
{
"Name": ["Ayush", "Bikram", "Ceela", "Kusal", "Shanty"],
"Score": [31, 38, 33, 39, 35],
"Age": [33, 34, 38, 45, 37],
}
)
print("DataFrame before Conversion:")
print(employees_df, "\n")
print("Datatype of columns before conversion:")
print(employees_df.dtypes, "\n")
employees_df = employees_df.applymap(str)
print("DataFrame after conversion:")
print(employees_df, "\n")
print("Datatype of columns after conversion:")
print(employees_df.dtypes)
Producción :
DataFrame before Conversion:
Name Score Age
0 Ayush 31 33
1 Bikram 38 34
2 Ceela 33 38
3 Kusal 39 45
4 Shanty 35 37
zeppy@zeppy-G7-7588:~/test/Week-01/taddaa$ python3 1.py
DataFrame before Conversion:
Name Score Age
0 Ayush 31 33
1 Bikram 38 34
2 Ceela 33 38
3 Kusal 39 45
4 Shanty 35 37
Datatype of columns before conversion:
Name object
Score int64
Age int64
dtype: object
DataFrame after conversion:
Name Score Age
0 Ayush 31 33
1 Bikram 38 34
2 Ceela 33 38
3 Kusal 39 45
4 Shanty 35 37
Datatype of columns after conversion:
Name object
Score object
Age object
dtype: object
Convierte el tipo de datos de todas las columnas del DataFrame al tipo string
denotado por object
en la salida.
Convertir el tipo de datos de los valores de las columnas de un DataFrame a string
utilizando el método astype()
import pandas as pd
employees_df = pd.DataFrame(
{
"Name": ["Ayush", "Bikram", "Ceela", "Kusal", "Shanty"],
"Score": [31, 38, 33, 39, 35],
"Age": [33, 34, 38, 45, 37],
}
)
print("DataFrame before Conversion:")
print(employees_df, "\n")
print("Datatype of columns before conversion:")
print(employees_df.dtypes, "\n")
employees_df["Score"] = employees_df["Score"].astype(str)
print("DataFrame after conversion:")
print(employees_df, "\n")
print("Datatype of columns after conversion:")
print(employees_df.dtypes)
Producción :
DataFrame before Conversion:
Name Score Age
0 Ayush 31 33
1 Bikram 38 34
2 Ceela 33 38
3 Kusal 39 45
4 Shanty 35 37
Datatype of columns before conversion:
Name object
Score int64
Age int64
dtype: object
DataFrame after conversion:
Name Score Age
0 Ayush 31 33
1 Bikram 38 34
2 Ceela 33 38
3 Kusal 39 45
4 Shanty 35 37
Datatype of columns after conversion:
Name object
Score object
Age int64
dtype: object
Convierte el tipo de datos de la columna Score
del Dataframe employees_df
al tipo string
.
Suraj Joshi is a backend software engineer at Matrice.ai.
LinkedInArtículo relacionado - Pandas DataFrame Column
- Cómo obtener las cabeceras de columna de Pandas DataFrame como una lista
- Cómo borrar la columna de Pandas DataFrame
- Cómo convertir la columna del DataFrame a Datetime en Pandas
- Cómo obtener la suma de la columna de Pandas
- Cómo cambiar el orden de las columnas Pandas DataFrame
- Cómo convertir la columna del DataFrame en cadena en los pandas