Pandas Merge auf mehrere Spalten
- Standard Pandas DataFrame Merge ohne Schlüsselspalte
-
Setzen Sie den Wert des Parameters
on
, um den Schlüsselwert für die Zusammenführung in Pandas festzulegen -
DataFrames mit
left_on
undright_on
zusammenführen
Dieses Tutorial erklärt, wie wir in Pandas zwei DataFrames mit Hilfe der Methode DataFrame.merge()
zusammenführen können.
import pandas as pd
roll_no = [501, 502, 503, 504, 505]
student_df = pd.DataFrame(
{
"Roll No": [500, 501, 503, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Gender": ["Female", "Male", "Male", "Female", "Female", "Male"],
"Age": [17, 18, 17, 16, 18, 16],
}
)
grades_df = pd.DataFrame(
{
"Roll No": [501, 502, 503, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Grades": ["A", "B+", "A-", "A", "B", "A+"],
}
)
print("1st DataFrame:")
print(student_df, "\n")
print("2nd DataFrame:")
print(grades_df, "\n")
print("Merged df:")
print(merged_df)
Ausgabe:
1st DataFrame:
Roll No Name Gender Age
0 500 Jennifer Female 17
1 501 Travis Male 18
2 503 Bob Male 17
3 504 Emma Female 16
4 505 Luna Female 18
5 506 Anish Male 16
2nd DataFrame:
Roll No Name Grades
0 501 Jennifer A
1 502 Travis B+
2 503 Bob A-
3 504 Emma A
4 505 Luna B
5 506 Anish A+
Wir werden die DataFrames student_df
und grades_df
verwenden, um die Funktionsweise von DataFrame.merge()
zu demonstrieren.
Standard Pandas DataFrame Merge ohne Schlüsselspalte
Wenn wir nur zwei zu verschmelzende DataFrames an die Methode merge()
übergeben, sammelt die Methode alle gemeinsamen Spalten in beiden DataFrames und ersetzt jede gemeinsame Spalte in beiden DataFrame durch eine einzige Spalte.
import pandas as pd
roll_no = [501, 502, 503, 504, 505]
student_df = pd.DataFrame(
{
"Roll No": [500, 501, 503, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Gender": ["Female", "Male", "Male", "Female", "Female", "Male"],
"Age": [17, 18, 17, 16, 18, 16],
}
)
grades_df = pd.DataFrame(
{
"Roll No": [501, 502, 503, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Grades": ["A", "B+", "A-", "A", "B", "A+"],
}
)
merged_df = pd.merge(student_df, grades_df)
print("1st DataFrame:")
print(student_df, "\n")
print("2nd DataFrame:")
print(grades_df, "\n")
print("Merged df:")
print(merged_df)
Ausgabe:
1st DataFrame:
Roll No Name Gender Age
0 500 Jennifer Female 17
1 501 Travis Male 18
2 503 Bob Male 17
3 504 Emma Female 16
4 505 Luna Female 18
5 506 Anish Male 16
2nd DataFrame:
Roll No Name Grades
0 501 Jennifer A
1 502 Travis B+
2 503 Bob A-
3 504 Emma A
4 505 Luna B
5 506 Anish A+
Merged df:
Roll No Name Gender Age Grades
0 503 Bob Male 17 A-
1 504 Emma Female 16 A
2 505 Luna Female 18 B
3 506 Anish Male 16 A+
Es werden die DataFrames student_df
und grades_df
zusammengeführt und merged_df
zugewiesen. Wir haben die Spalten Roll No
und Name
in beiden DataFrames gemeinsam, aber die Funktion merge()
wird jede gemeinsame Spalte zu einer einzigen Spalte zusammenführen.
Setzen Sie den Wert des Parameters on
, um den Schlüsselwert für die Zusammenführung in Pandas festzulegen
import pandas as pd
roll_no = [501, 502, 503, 504, 505]
student_df = pd.DataFrame(
{
"Roll No": [500, 501, 503, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Gender": ["Female", "Male", "Male", "Female", "Female", "Male"],
"Age": [17, 18, 17, 16, 18, 16],
}
)
grades_df = pd.DataFrame(
{
"Roll No": [501, 502, 503, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Grades": ["A", "B+", "A-", "A", "B", "A+"],
}
)
merged_df = pd.merge(student_df, grades_df, on="Roll No")
print("1st DataFrame:")
print(student_df, "\n")
print("2nd DataFrame:")
print(grades_df, "\n")
print("Merged df:")
print(merged_df)
Ausgabe:
1st DataFrame:
Roll No Name Gender Age
0 500 Jennifer Female 17
1 501 Travis Male 18
2 503 Bob Male 17
3 504 Emma Female 16
4 505 Luna Female 18
5 506 Anish Male 16
2nd DataFrame:
Roll No Name Grades
0 501 Jennifer A
1 502 Travis B+
2 503 Bob A-
3 504 Emma A
4 505 Luna B
5 506 Anish A+
Merged df:
Roll No Name_x Gender Age Name_y Grades
0 501 Travis Male 18 Jennifer A
1 503 Bob Male 17 Bob A-
2 504 Emma Female 16 Emma A
3 505 Luna Female 18 Luna B
4 506 Anish Male 16 Anish A+
Hier setzen wir on="Roll No"
und die Funktion merge()
findet die Spalte mit dem Namen Roll No
in beiden DataFrames und wir haben nur eine einzige Spalte Roll No
für das merged_df
. Obwohl die Spalte Name
ebenfalls beiden DataFrames gemeinsam ist, haben wir eine separate Spalte für die Spalte Name
des linken und rechten DataFrames, die durch Name_x
und Name_y
dargestellt werden, da Name
nicht als on
-Parameter übergeben wird.
DataFrames mit left_on
und right_on
zusammenführen
import pandas as pd
roll_no = [501, 502, 503, 504, 505]
student_df = pd.DataFrame(
{
"Roll No": [500, 501, 503, 504, 505, 506],
"Name": ["Jennifer", "Travis", "Bob", "Emma", "Luna", "Anish"],
"Gender": ["Female", "Male", "Male", "Female", "Female", "Male"],
"Age": [17, 18, 17, 16, 18, 16],
}
)
grades_df = pd.DataFrame(
{"Id": [501, 502, 503, 504, 505, 506], "Grades": ["A", "B+", "A-", "A", "B", "A+"]}
)
merged_df = pd.merge(student_df, grades_df, left_on="Roll No", right_on="Id")
print("1st DataFrame:")
print(student_df, "\n")
print("2nd DataFrame:")
print(grades_df, "\n")
print("Merged df:")
print(merged_df)
Ausgabe:
1st DataFrame:
Roll No Name Gender Age
0 500 Jennifer Female 17
1 501 Travis Male 18
2 503 Bob Male 17
3 504 Emma Female 16
4 505 Luna Female 18
5 506 Anish Male 16
2nd DataFrame:
Id Grades
0 501 A
1 502 B+
2 503 A-
3 504 A
4 505 B
5 506 A+
Merged df:
Roll No Name Gender Age Id Grades
0 501 Travis Male 18 501 A
1 503 Bob Male 17 503 A-
2 504 Emma Female 16 504 A
3 505 Luna Female 18 505 B
4 506 Anish Male 16 506 A+
Wenn wir für eine Spalte, die zusammengeführt werden soll, unterschiedliche Spaltennamen in DataFrames haben, können wir die Parameter left_on
und right_on
verwenden. Dabei wird left_on
auf den Namen der Spalte im linken DataFrame und right_on
auf den Namen der Spalte im rechten DataFrame gesetzt.
Suraj Joshi is a backend software engineer at Matrice.ai.
LinkedIn