Pandas Axis Bedeutung
Dieses Tutorial erklärt die Bedeutung des Parameters axos
, der in verschiedenen Methoden von Pandas-Objekten wie DataFrames und Series
verwendet wird.
import pandas as pd
empl_df = pd.DataFrame(
{
"Name": ["Jon", "Willy", "Mike", "Luna", "Sam", "Aliza"],
"Age": [30, 33, 35, 30, 30, 31],
"Weight(KG)": [75, 75, 80, 70, 73, 70],
"Height(meters)": [1.7, 1.7, 1.85, 1.75, 1.8, 1.75],
"Salary($)": [3300, 3500, 4000, 3050, 3500, 3700],
}
)
print(empl_df)
Ausgabe:
Name Age Weight(KG) Height(meters) Salary($)
0 Jon 30 75 1.70 3300
1 Willy 33 75 1.70 3500
2 Mike 35 80 1.85 4000
3 Luna 30 70 1.75 3050
4 Sam 30 73 1.80 3500
5 Aliza 31 70 1.75 3700
Anhand des DataFrames empl_df
wird die Verwendung des axis
Parameters in Pandas Methoden erklärt.
Verwendung des axis
-Parameters in Pandas-Methoden
Der Parameter axis
gibt die Richtung an, entlang derer eine bestimmte Methode oder Funktion in einem DataFrame angewendet wird. Der Parameter axis=0
bedeutet, dass die Funktion spaltenweise angewendet wird, und axis=1
bedeutet, dass die Funktion zeilenweise auf den DataFrame angewendet wird.
Wenn wir eine Funktion spaltenweise anwenden, erhalten wir ein Ergebnis mit einer einzigen Zeile; wenn wir eine Funktion zeilenweise anwenden, erhalten wir einen DataFrame mit einer einzigen Spalte.
Beispiel: Verwendung von axis=0
in Pandas-Methoden
import pandas as pd
empl_df = pd.DataFrame(
{
"Name": ["Jon", "Willy", "Mike", "Luna", "Sam", "Aliza"],
"Age": [30, 33, 35, 30, 30, 31],
"Weight(KG)": [75, 75, 80, 70, 73, 70],
"Height(meters)": [1.7, 1.7, 1.85, 1.75, 1.8, 1.75],
"Salary($)": [3300, 3500, 4000, 3050, 3500, 3700],
}
)
print("The Employee DataFrame is:")
print(empl_df, "\n")
print("The DataFrame with mean values of each column is:")
print(empl_df.mean(axis=0))
Ausgabe:
The Employee DataFrame is:
Name Age Weight(KG) Height(meters) Salary($)
0 Jon 30 75 1.70 3300
1 Willy 33 75 1.70 3500
2 Mike 35 80 1.85 4000
3 Luna 30 70 1.75 3050
4 Sam 30 73 1.80 3500
5 Aliza 31 70 1.75 3700
The DataFrame with mean values of each column is:
Age 31.500000
Weight(KG) 73.833333
Height(meters) 1.758333
Salary($) 3508.333333
dtype: float64
Es wird der spaltenweise Mittelwert des DataFrames empl_df
berechnet. Der Mittelwert wird nur für Spalten mit numerischen Werten berechnet.
Wenn wir axis=0
setzen, wird der Mittelwert jeder Spalte durch Mittelung der Zeilenwerte für diese bestimmte Spalte berechnet.
Beispiel: Verwendung von axis=1
in Pandas-Methoden
import pandas as pd
empl_df = pd.DataFrame(
{
"Name": ["Jon", "Willy", "Mike", "Luna", "Sam", "Aliza"],
"Age": [30, 33, 35, 30, 30, 31],
"Weight(KG)": [75, 75, 80, 70, 73, 70],
"Height(meters)": [1.7, 1.7, 1.85, 1.75, 1.8, 1.75],
"Salary($)": [3300, 3500, 4000, 3050, 3500, 3700],
}
)
print("The Employee DataFrame is:")
print(empl_df, "\n")
print("The DataFrame with mean values of each row is:")
print(empl_df.mean(axis=1))
Ausgabe:
The Employee DataFrame is:
Name Age Weight(KG) Height(meters) Salary($)
0 Jon 30 75 1.70 3300
1 Willy 33 75 1.70 3500
2 Mike 35 80 1.85 4000
3 Luna 30 70 1.75 3050
4 Sam 30 73 1.80 3500
5 Aliza 31 70 1.75 3700
The DataFrame with mean values of each row is:
0 851.6750
1 902.4250
2 1029.2125
3 787.9375
4 901.2000
5 950.6875
dtype: float64
Es wird der zeilenweise Mittelwert für den DataFrame empl_df
berechnet, in anderen Worten, es wird der Mittelwert für jede Zeile durch Mittelung der Spaltenwerte vom numerischen Typ für diese Zeile berechnet. Am Ende erhalten wir eine einzelne Spalte mit dem Durchschnittswert für jede Zeile.
Suraj Joshi is a backend software engineer at Matrice.ai.
LinkedInVerwandter Artikel - Pandas DataFrame Row
- So erhalten Sie die Zeilenanzahl eines Pandas DataFrame
- Zufälliges Mischen von DataFrame-Zeilen in Pandas
- Wie man DataFrame-Zeilen auf der Grundlage von Spaltenwerten in Pandas filtert
- Wie man durch Zeilen eines DataFrame in Pandas iteriert
- Wie erhält man einen Index aller Reihen, deren bestimmte Spalte den gegebenen Zustand in Pandas befriedigt
- Finden Sie doppelte Zeilen in einem DataFrame mit Pandas
Verwandter Artikel - Pandas DataFrame Column
- Wie man Pandas DataFrame-Spaltenüberschriften als Liste erhält
- Pandas DataFrame-Spalte löschen
- Wie man DataFrame-Spalte in Datetime in Pandas konvertiert
- So erhalten Sie die Summe der Pandas-Spalte
- Wie man die Reihenfolge der Pandas DataFrame-Spalten ändert
- Wie man eine DataFrame-Spalte in eine Zeichenkette in Pandas konvertiert