Pandas DataFrame DataFrame.max() Function

Jinku Hu Jan 30, 2023
  1. Syntax of pandas.DataFrame.max():
  2. Example Codes: DataFrame.max() Method to Find Max Along Column Axis
  3. Example Codes: DataFrame.max() Method to Find Max Along Row Axis
  4. Example Codes: DataFrame.max() Method to Get Max Ignoring NaN Values
Pandas DataFrame DataFrame.max() Function

Python Pandas DataFrame.max() function calculates max value of values of DataFrame object over the specified axis.

Syntax of pandas.DataFrame.max():

DataFrame.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Parameters

axis find max along the row (axis=0) or column (axis=1)
skipna Boolean. Exclude NaN values (skipna=True) or include NaN values (skipna=False)
level Count along with particular level if the axis is MultiIndex
numeric_only Boolean. For numeric_only=True, include only float, int and boolean columns
**kwargs Additional keyword arguments to the function.

Return

If the level is not specified, return Series of the maximum of the values for the requested axis, else return DataFrame of max values.

Example Codes: DataFrame.max() Method to Find Max Along Column Axis

import pandas as pd

df = pd.DataFrame({'X': [1, 2, 2, 3],
                   'Y': [4, 3, 8, 4]})
print("DataFrame:")
print(df)

maxs = df.max()

print("Max of Each Column:")
print(maxs)

Output:

DataFrame:
   X  Y
0  1  4
1  2  3
2  2  8
3  3  4
Max of Each Column:
X    3
Y    8
dtype: int64

It gets the max value for both columns X and Y and finally returns a Series object with the max of each column.

To find the max of a particular column of DataFrame in Pandas, we call the max() function for that column only.

import pandas as pd

df = pd.DataFrame({'X': [1, 2, 2, 3],
                   'Y': [4, 3, 8, 4]})
print("DataFrame:")
print(df)

maxs = df["X"].max()

print("Max of Each Column:")
print(maxs)

Output:

DataFrame:
   X  Y
0  1  4
1  2  3
2  2  8
3  3  4
Max of Each Column:
3

It only gives the max of values of column X in the DataFrame.

Example Codes: DataFrame.max() Method to Find Max Along Row Axis

import pandas as pd

df = pd.DataFrame({'X': [1, 2, 7, 5, 10],
                   'Y': [4, 3, 8, 2, 9],
                   'Z': [2, 7, 6, 10, 5]})
print("DataFrame:")
print(df)

maxs=df.max(axis=1)

print("Max of Each Row:")
print(maxs)

Output:

DataFrame:
    X  Y   Z
0   1  4   2
1   2  3   7
2   7  8   6
3   5  2  10
4  10  9   5
Max of Each Row:
0     4
1     7
2     8
3    10
4    10
dtype: int64

It calculates the max for all the rows and finally returns a Series object with the max of each row.

Example Codes: DataFrame.max() Method to Get Max Ignoring NaN Values

We use the default value of skipna parameter i.e. skipna=True to find the max of DataFrame along the specified axis ignoring NaN values.

import pandas as pd

df = pd.DataFrame({'X': [1, 2, None, 3],
                   'Y': [4, 3, 7, 4]})
print("DataFrame:")
print(df)

maxs=df.max(skipna=True)
print("Max of Columns")
print(maxs)

Output:

DataFrame:
     X    Y
0  1.0  4.0
1  2.0  3.0
2  NaN  7.0
3  3.0  4.0
Max of Columns
X    3.0
Y    7.0
dtype: float64

If we set skipna=True, it ignores the NaN in the dataframe. It allows us to calculate the max of DataFrame along column axis ignoring NaN values.

import pandas as pd

df = pd.DataFrame({'X': [1, 2, None, 3],
                   'Y': [4, 3, 7, 4]})
print("DataFrame:")
print(df)

maxs=df.max(skipna=False)
print("Max of Columns")
print(maxs)

Output:

DataFrame:
     X  Y
0  1.0  4
1  2.0  3
2  NaN  7
3  3.0  4
Max of Columns
X    NaN
Y    7.0
dtype: float64

Here, we get NaN value for the max value of column X as column X has NaN value present in it.

Author: Jinku Hu
Jinku Hu avatar Jinku Hu avatar

Founder of DelftStack.com. Jinku has worked in the robotics and automotive industries for over 8 years. He sharpened his coding skills when he needed to do the automatic testing, data collection from remote servers and report creation from the endurance test. He is from an electrical/electronics engineering background but has expanded his interest to embedded electronics, embedded programming and front-/back-end programming.

LinkedIn Facebook

Related Article - Pandas DataFrame